
C:\WINDOWS\WORD\DOT\!5X8.DOT

NS_Text
v0.6

tTextFile

C:\WINDOWS\WORD\DOT\!5X8.DOT
Preface
The System unit is Turbo Pascal’s run-time library. It implements low-level, run-time support routines for
all built-in features, such as file I/O, string handling, floating point, dynamic memory allocation, and
text files. The System unit is used automatically by any unit or program and doesn’t need to be
referred to in a Uses clause.
The WinDOS unit implements a number of operating system and file-handling routines. None of the
routines in the WinDOS unit are defined by standard Pascal, so they have been placed in their own
module.
The NS_Text unit binds all the functions, procedures, types, constants, and variables from the System
and WinDOS units into 1 object thus allowing the programmer to treat each file as a separate entity
(instance) and freeing him from most of the lower level parameter and exception (error checking)
maintenance. NS_Text can be used as a platform to build more specialized text handling objects,
devices, typed or untyped files. (When creating special device handling objects from NS_Text some
routines may not apply. To circumvent this situation you might wish to override (nullify) them with
empty methods.)

+ In order to use the features of the NS_Text object, you must include a reference to NS_Text
in your Uses clause.

C:\WINDOWS\WORD\DOT\!5X8.DOT
What's New to v0.6
€ Added methods SetFAttr & GetFAttr to manipulate file attributes
€ Added methods SetFTime & GetFTime to manipulate file time stamps
€ Added ability to copy file within its instance (i.e. no longer need to destruct instance, copy file, &

recreate instance)
€ Added ability to instantate leaving file closed (via NS_Closed enumerated type)
€ Added method FileSplit to return subcomponents of the file name
€ Methods made recursive where possible to reduce code / increase integrity
€ Private method CClose added to increase integrity

C:\WINDOWS\WORD\DOT\!5X8.DOT
An Introduction to Using Text Files
A Pascal file variable is any variable whose type is a file type. There are three classes of Pascal files:
typed, text, and untyped. The NS_Text unit was designed with the text class in mind. So we will ignore
the other two classes in this document.
Before a file variable can be used, it must be associated with an external file through a call to the
Assign procedure. An external file is typically a named disk file, but it can also be a device, such as the
keyboard or the display. The external file stores the information written to the file or supplies the
information read from the file.
Once the association with an external file is established, the file variable must be opened to prepare it
for input or output. An existing file can be opened via the Reset procedure and a new file can be
created and opened via the Rewrite procedure. Text files opened with Reset are read-only and text files
opened with Rewrite and Append are write-only.

+ When using the Rewrite procedure, it will overwrite any existing files with the same name.
Take precautions to make a backup if there is a possibility of loosing important data.

Every file is a linear sequence of components, each of which has the component type (or record type)
of the file. Each component has a component number. The first component of a file is considered to be
component zero.
Files are normally accessed sequentially; that is, when a component is read using the standard
procedure Read or written using the standard procedure Write, the current file position moves to the
next numerically-ordered file component.
When a program completes processing a file, the file must be closed using the standard procedure
Close. After closing a file completely, its associated external file is updated. The file variable can then
be associated with another external file.
By default, all calls to standard I/O procedures and functions are automatically checked for errors: if an
error occurs, the program terminates, displaying a run-time error message. This automatic checking
can be turned on and off using the {$I+} and {$I-} compiler directives. When I/O checking is off that
is, when a procedure or function call is compiled in the {$I-} state an I/O error does not cause the
program to halt. To check the result of an I/O operation, you must instead call the standard function
IOResult.

+ In Turbo Pascal the type Text is distinct from the type File of Char.
Text Files
When a text file is opened, the external file is interpreted in a special way: it is considered to represent
a sequence of characters formatted into lines, where each line is terminated by an end-of-line marker
(a carriage-return character, possibly followed by a line-feed character).
For text files, there are special forms of Read and Write that allow you to read and write values that are
not of type Char. Such values are automatically translated to and from their character representation.
For example, Read(F, I), where I is a type Integer variable, will read a sequence of digits, interpret that
sequence as a decimal integer, and store it in I.
Turbo Pascal defines two standard text-file variables, Input and Output. The standard file variable Input
is a read-only file associated with the operating system’s standard input file (typically the keyboard),
and the standard file variable Output is a write-only file associated with the operating system’s
standard output file (typically the display).
Since Windows doesn’t directly support text-oriented input and output, the Input and Output files are
by default unassigned in a Windows application, and any attempt to read or write to them will produce
an I/O error. However, if an application uses the WinCrt unit, Input and Output will refer to a scrollable
text window. WinCrt contains the complete control logic required to emulate a text screen in the
Windows environment, and no Windows-specific programming is required in an application that uses
WinCrt.
Some of the standard procedures and functions associated with text files do not need to have a file
variable explicitly given as a parameter. If the file parameter is omitted, Input or Output are assumed
by default, depending on whether the procedure or function is input or output oriented. For instance,
Read(X) corresponds to Read(Input, X) and Write(X) corresponds to Write(Output, X).
If you do not specify a file when calling one of the procedures or functions in this section, the file must
have been associated with an external file using Assign, and opened using Reset, Rewrite, or Append.
An error message is generated if you pass a file that was opened with Reset to an output-oriented
procedure or function. Likewise, it’s an error to pass a file that was opened with Rewrite or Append to
an input-oriented procedure or function.

C:\WINDOWS\WORD\DOT\!5X8.DOT
Devices
Turbo Pascal and the DOS operating system regard external hardware, such as the keyboard, the
display, and the printer, as devices. From the programmer’s point of view, a device is treated as a file,
and is operated on through the same standard procedures and functions as files.
Turbo Pascal supports two kinds of devices: DOS devices and text file devices.
DOS Devices
DOS Devices are implemented through reserved file names that have a special meaning attached to
them. DOS devices are completely transparent in fact, Turbo Pascal is not even aware when a file
variable refers to a device instead of a disk file. For example, the program

Var
 Lst : Text;

Begin
 Assign(Lst, 'LPT1');
 ReWrite(Lst);
 WriteLn(Lst, 'Hello World...');
 Close(Lst);
End.

writes the string Hello World... on the printer, even though the syntax for doing so is exactly the same
for a disk file.
The devices implemented by DOS are used for obtaining or presenting legible input or output. Therefor,
DOS devices are normally used only in connection with text files.
In general, you should avoid using DOS device devices under Windows and you should use the device
I/O functions provided by the Windows API instead. Although some DOS devices, such as LPT1, may
work others, such as CON, will not function properly.
Text File Devices
Text file devices are used to implement devices unsupported by DOS or to provide another set of
features similar to those supplied by another DOS device. A good example of a text file device is the
CRT window implemented by the WinCrt standard unit. It provides a terminal-like text screen in a
window and allows you to create Standard I/O applications under Windows with a minimum of effort.
Unlike DOS devices, text file devices have no reserved file names; in fact, they have no file names at
all. Instead, a file is associated with a text file device through a customized Assign procedure. For
instance, the WinCrt standard unit implements an AssignCrt procedure that associates text files with
the CRT window.
A text file device driver is a set of four functions that completely implement an interface between Turbo
Pascal’s file system and some device. These four functions are Open, InOut, Flush, and Close. The
function header of each function is

Function DeviceFunc(Var F:TTextRec) : Integer;
where TTextRec is the text file record type defined in Chapter 3 of the Programmers Guide. Each
function must be compiled in the {$F+} state to force it to use the far call model. The return value of a
device interface function becomes the value returned by IOResult. The return value of 0 indicates a
successful operation.
To associate the device interface functions with a specific file, you must write a customized Assign
procedure (like the AssignCrt procedure in the WinCrt unit). The Assign procedure must assign the
addresses of the four device interface functions to the four function pointers in the text file variable. In
addition, it should store the fmClosed magic constant in the Mode field, store the size of the text file
buffer in BufSize, store a pointer to the text file buffer in BufPtr, and clear the Name string.
Assuming, for example, that the four device interface functions are called DevOpen, DevInOut,
DevFlush, and DevClose, the Assign procedure might look like this:

Procedure AssignDev(Var F:Text);
 Begin
 With TextRec(F) Do
 Begin
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 OpenFunc := @DevOpen;
 InOutFunc := @DevInOut;
 FlushFunc := @DevFlush;
 CloseFunc := @DevClose;
 Name[0] := #0;
 End;
 {EndWith}
 End
{EndProcedure}

The device interface functions can use the UserData field in the file record to store private information.
This field is not modified by the Turbo Pascal file system at any time.
The Open Function

C:\WINDOWS\WORD\DOT\!5X8.DOT
The Open function is called by the Reset, ReWrite, and Append standard procedures to open a text file
associated with a device. On entry, the Mode field contains fmInput, fmOutput, or fmInOut to indicate
whether the Open function was called from Reset, ReWrite, or Append.
The Open function prepares the file for input or output, according to the Mode value. If Mode specified
in fmInOut (indicating that Open was called from Append), it must be changed to fmOutPut before
Open returns.
Open is always called before any of the other device interface functions. For that reason, Assign only
initializes the OpenFunc field, leaving initialization of the remaining vectors up to Open. Based on
Mode, Open can then install pointers to either input or output oriented functions. This saves the InOut,
Flush, and Close functions from determining the current mode.
The InOut Function
The InOut function is called by the Read, ReadLn, Write, WriteLn, Eof, Eoln, SeekEof, SeekEoln, and
Close standard procedures and functions whenever input or output from the device is required.
When Mode is fmInput, the InOut function reads up to BufSize characters into BufPtr^, and returns the
number of characters read into BufEnd. In addition, it stores 0 in BufPos. If the InOut function returns 0
in BufEnd as a result of in input request, Eof becomes True for the file.
When Mode is fmOutPut, the InOut function writes BufPos characters from BufPtr^, and returns 0 in
BufPos.
The Flush Function
The Flush function is called at the end of each Read, ReadLn, Write, and WriteLn. It can optionally flush
the text file buffer.
If Mode is fmInput, the Flush function can store 0 in BufPos and BufEnd to flush the remaining (un-read)
characters in the buffer. This feature is seldom used.
If Mode is fmOutput, the Flush function can write the contents of the buffer, exactly like the InOut
function, which ensures that text written to the device appears on the device immediately. If Flush does
nothing, the text will not appear on the device until the buffer becomes full or the file is closed.
The Close Function
The Close function is called by the Close standard procedure to close a text file associated with a
device. (The Reset, ReWrite, and Append procedures also call Close if the file they are opening is
already open.) If Mode is fmOutPut, then before calling Close, Turbo Pascal’s file system calls InOut to
ensure that all characters have been written to the device.
Predeclared System Variables
Besides procedures and functions, the Turbo Pascal System unit provides a number of predeclared
variables.

Variable Type Init Val
Description

Input Text N/A Input
standard file

Output Text N/A Output
standard file

ErrorAddr Pointernil Run-time
error address

ExitProc Pointernil Exit
procedure

InOutRes Integer 0 I/O
result buffer
The ExitProc and ErrorAddr variables are used to implement exit procedures. These exit procedures can
be helpful in closing any open files upon the applications exit but will not be discussed here. You can
find more detail on these variables in Chapter 18 of the Programmers Guide.
The built-in I/O routines use InOutRes to store the value that the next call to the IOResult standard
function will return.
Input and Output are the standard I/O files required by every Pascal implementation.
Predeclared WinDOS Variables
File Mode Constants
The file-handling procedures use these constants when opening and closing disk files. The mode fields
of Turbo Pascal’s file variables will contain one of the values specified in the following:

Constant Value

C:\WINDOWS\WORD\DOT\!5X8.DOT
fmClosed $D7B0
fmInput $D7B1
fmOutput $D7B2
fmInOut $D7B3

File Attribute Constants
These constants test, set, and clear file attribute bits in connection with the GetFAttr, SetFAttr,
FindFirst, and FindNext procedures:

Constant Value
faReadOnly $01
faHidden $02
faSysFile $04
faVolumeID $08
faDirectory $10
faArchive $20
faAnyFile $3F

The constants are additive, that is, the statement
FindFirst('*.*', faReadOnly + faDirectory, S);

will locate all normal files as well as read-only files and subdirectories in the current directory. The
faAnyFile constant is simply the sum of all attributes.
File String Constants
These constants are the maximum file name component string lengths used by the functions
FileSearch and FileExpand.

Constant Value
fsPathName 79
fsDirectory 67
fsFileName 8
fsExtension 4

FileSplit Return Flag Constants
These return flags are used by the function FileSplit. The return value is a combination of the
fcDirectory, fcFileName, and fcExtension bit masks, indicating which components were present in the
path. If the name or extension contains any wildcard characters (* or ?), the fcWildCards flag is set in
the return value.

Constant Value
fcExtension $0001
fcFileName $0002
fcDirectory $0004
fcWildCards $0008

File Record Types
The record definitions used internally by Turbo Pascal are also declared in the WinDOS unit. TFileRec is
used for both typed and untyped files, while TTextRec is the internal format of a variable of type Text.

Type
 TFileRec = Record { Typed and untyped files }
 Handle : Word;
 Mode : Word;
 RecSize : Word;
 Private : Array [1..26] Of Byte;
 UserData : Array [1..16] of Byte;
 Name : Array [0..79] Of Char;
 End; {Record}
 PTextBuf = ^TTextBuf; { TextFile record }
 TTextBuf = Array [0..127] Of Char;
 TTextRec = Record
 Handle : Word;
 Mode : Word;
 BufSize : Word;
 Private : Word;
 BufPos : Word;
 BufEnd : Word;
 BufPtr : ^TTextBuf;
 OpenFunc : Pointer;
 InOutFunc : Pointer;
 FlushFunc : Pointer;
 CloseFunc : Pointer
 UserData : Array [1..16] of Byte;
 Name : Array [0..79] Of Char;
 Buffer : TTextBuf;
 End; {Record}

TDateTime Type
Variables of TDateTime type are used in conjunction with the UnpackTime and PackTime procedures to

C:\WINDOWS\WORD\DOT\!5X8.DOT
examine and construct 4-byte, packed date-and-time values for the GetFTime, SetFTime, FindFirst, and
FindNext procedures.

Type
 TDateTime = Record
 Year, Month, Day, Hour, Min, Sec : Word
 End; {Record}

TSearchRec Type
The FindFirst and FindNext procedures use variables of type TSearchRec to scan directories.

Type
 TSearchRec = Record
 Fill : Array [1..21] Of Byte;
 Attr : Byte;
 Time : LongInt;
 Size : LongInt;
 Name : Array [0..12] Of Char;

DOSError Variable
DOSError is used by many of the routines in the WinDOS unit to report errors.

Var
 DosError : Integer;

The values stored in DOSError are DOS error codes. A value of 0 indicates no error; other possible error
codes include:

DOS Error Code Means
2 File not found
3 Path not found
5 Access denied
6 Invalid handle
8 Not enough memory
10 Invalid environment
11 Invalid format
18 No more files

C:\WINDOWS\WORD\DOT\!5X8.DOT
Using NS_Text
TTextFile Object Reference
Types
FileIntegType An enumerated type

containing the identifiers NS_Normal, and NS_High. Used in the Integrity method.
+ Setting the DOS verify flag (via SetVerify) to true will ensure the highest integrity when used

in conjunction with NS_High. Note, though, this configuration will severely hamper
performance of the entire system.

FileNameType A PChar type. The
maximum length is defined by the fsPathName constant (which is 79) plus 1.

FileOpenType An enumerated type
containing the identifiers NS_Reset, NS_ReWrite, NS_Append and NS_Closed. These
identifiers correspond with the three modes in which a text file can be opened for
processing, Reset, ReWrite, and Append, respectively. NS_Closed leaves the file closed
upon initialization, and may be useful when using FCopy, GetFAttr, or SetFAttr.

PTextFile A pointer to the TTextFile object.
TTextFile The TTextFile object.
Unit Variables (typed constants)
TextError A byte type set to 0 when TextOK is True. When TextOK is False, TextError holds the first

Turbo Pascal run-time error code which caused the methods result to become unreliable.
TextOK A boolean type set to True if the method completed reliably. TextOK is set to False when

the methods result will be unreliable upon termination; usually requiring the programmer
(you) to further define the exception logic.

+ The term unreliable is used in place of the more general failed because TTextFile methods
automatically compensate for many internal functions or procedures generating a run-time
error (i.e. a run-time error may simply redirect the flow of logic within the method).

+ With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it returns a
nonzero error code.

Instance Variables
F The text-file variable associated with the external file FileName.
FileInteg A FileIntegType type identifying the level of integrity to be maintained for this file

instance.
FileMode A FileOpenType type identifying the mode in which the file was opened for I/O.
FileName Holds the DOS path and file name passed with the Init constructor. FileName is of type

FileNameType. 80 bytes of heap space are allocated via GetMem in the Init constructor
and released via FreeMem in the Close / Erase destructors.

FlushBuffer A boolean type which is set to true when data is buffered to disk (i.e. when a Write /
WriteLn has been issued but before Flush has been called). FlushBuffer is initialized to
False.

Methods
Append Procedure Append;

Closes and reopens an existing file for appending. Append reopens the external file with
the name assigned to FileName for write-only output. The current file position is set to
the end of the file. If there is no external file, Append will first create one. If the external
file was already open, it is first closed and then re-opened. If a Ctrl+Z is present in the
last 128-byte block of the file, the current file position is set to overwrite the first Ctrl+Z
in the block. In this way, text can be appended to a file that terminates with a Ctrl+Z. If
FileName is an empty name (such as

x.Init(' ', NS_Append);), then all calls will refer to the standard Output file (standard file handle number
1).

Close Destructor Close; Virtual;
The Close destructor closes the open file and removes the objects instance from
memory. The external file is completely updated and its DOS file handle is freed for
reuse.

C:\WINDOWS\WORD\DOT\!5X8.DOT
EOF Function EOF:Boolean; Virtual;

Returns the end-of-file status of a text file. EOF operates on the file specified in the Init
procedure and returns True if it is beyond the last character of the file or if the file
contains no components; otherwise, EOF returns False.

EOLN Function EOLN:Boolean; Virtual;
Returns the end-of-line status of a file. EOLN operates on the file specified in the Init
procedure and returns True if the current file position is at an end-of-line marker (or if
EOF is True); otherwise, EOLN returns False.

Erase Destructor Erase; Virtual;
The Erase destructor erases the external file and removes the objects instance from
memory. The external file is first closed, freeing its DOS file handle for reuse.

FCopy Procedure FCopy(DestName:FileNameType); Virtual;
Copies an external file to the new external file DestName. DestName is of type
FileNameType. The original external file remains intact. After the file has been
successfully copied, it will be reopened according to the state identified in FileMode. The
current file position is set to the beginning of the file (unless FileMode is NS_Append, and
then it is set to the end of the file) and the value of FlushBuffer is set to False. Further
operations will operate on the original external file. A method Borland should certainly
include!

FileSplit Function(Dir, Name, Ext:PChar); Virtual;
Splits the file name maintained in FileName into its three components. Dir is set to the
drive and directory path with any leading and trailing backslashes, Name is set to the file
name, and Ext is set to the extension with a preceding period. Notice that the returned
values are of type PChar; be sure to check for nil pointers. The maximum lengths of the
strings returned in Dir, Name, and Ext are defined by the fsDirectory, fsFileName, and
fsExtension constants. The returned value is a combination of the fcDirectory,
fcFileName, and fcExtension bit masks, indicating which components were present in
FileName. If the name or extension contains any wildcard characters (* or ?), the
fcWildCards flag is set in the returned value.

Flush Procedure Flush; Virtual;
Flushes the buffer of a text file open for output. When a text file has been opened for
output using ReWrite or Append, a call to Flush will empty the file’s buffer. This
guarantees that all characters written to the file at that time have actually been written
to the external file. If an I/O run-time error occurs, Flush remains in its current state (that
is, prior to the call). Flush has no effect on files opened for input.

GetFAttr Procedure GetFAttr(VAR Attr:Word); Virtual;
Returns the attributes of a file. The attributes are examined by ADDing them with the file
attribute masks defined as constants in the WinDOS unit.

GetFTime Procedure GetFTime(VAR Time:LongInt); Virtual;
Returns the date and time a file was last written. The time returned in the Time
parameter may be unpacked through a call to UnPackTime.

Init Constructor Init(Name:FileNameType; State:FileOpenType);
Opens the file name specified in the .Init Name parameter for I/O. Name is expanded into
a fully qualified file name and stored in the FileName instance variable. The FlushBuffer
instance variable is set to false and the FileMode instance variable is set equal to the
enumerated type specified in the State parameter. FileName is assigned to the instance
variable F and according to the enumerated type specified in the State parameter,
opened for I/O.

Integrity Procedure Integrity(Integ:FileIntegType);
Takes a parameter of type FileIntegType to determine the level of integrity Write / WriteLn
are to maintain. If Integrity is NS_High then the buffer is flushed after each Write /
WriteLn.

Read Procedure Read(VAR Item:String); Virtual;
Reads a file component into a variable. This method is intended to be overridden, unless
you intend to read in 1 component of type string.

ReadLn Procedure ReadLn(VAR Item:String); Virtual;
Executes the Read procedure then skips to the next line of the file.

ReName Procedure ReName;
Closes then renames an external file. NewName is of type FileNameType. The external

C:\WINDOWS\WORD\DOT\!5X8.DOT
file is renamed to NewName. After the file has been successfully renamed, it will be
reopened according to the state identified in FileMode. The current file position is set to
the beginning of the file (unless FileMode is NS_Append, and then it is set to the end of
the file) and the value of FlushBuffer is set to False. Further operations will operate on
the external file with the new name.

Reset Procedure Reset;
Closes and reopens the existing external file for read-only input specified in FileName,
setting the current file position to the beginning of the file. If FileName is an empty name
(such as x.Init(' ', NS_Reset);), then all calls will refer to the standard input file (standard
file handle number 0). After a call to Reset, EOF is True if the file is empty or did not
exist; otherwise, EOF is False.

ReWrite Procedure ReWrite;
Closes recreates and reopens the external file specified in FileName for write-only
output. If an external file with the same name already exists, it is deleted and a new
empty file is created in its place. The current file position is set to the beginning of the
empty file. If FileName is an empty name (such as

x.Init(' ', NS_ReWrite);), then all calls will refer to the standard output file (standard file handle number
1).

+ Reset, ReWrite, and Append are core methods called by other methods, such as Init and
ReName. For this reason they have not been defined as virtual.

SeekEOF Function SeekEOF:Boolean; Virtual;
Returns the end-of-file status of a file. SeekEOF corresponds to EOF except that it skips
all blanks, tabs, and end-of-line markers before returning the end-of-file status. This is
useful when reading numeric values from a text file.

SeekEOLN Function SeekEOLN:Boolean; Virtual;
Returns the end-of-line status of a file. SeekEOLN corresponds to EOLN except that it
skips all blanks and tabs before returning the end-of-line status. This is useful when
reading numeric values from a text file.

SetFAttr Procedure GetFAttr(VAR Attr:Word); Virtual;
Sets the attributes of a file. The attribute value is formed by ADDing the appropriate
attribute masks defined as constants in the WinDOS unit.

SetFlush Procedure SetFlush;
Used with procedures and functions which extend the TTextFile object, SetFlush sets the
value of FlushBuffer to true, indicating that data may be buffered and needs to be
flushed. This method does not affect the value of IORresult.

SetFTime Procedure GetFTime(VAR Time:LongInt); Virtual;
Sets the date and time a file was last written. The time parameter can be created
through a call to PackTime.

Write Procedure Write(Item:String); Virtual;
Writes a variable to a file component. This method is intended to be overridden, unless
you intend to write 1 variable of type String.

WriteLn Procedure WriteLn(Item:String); Virtual;
Executes the Write procedure then skips to the next line of the file.

+ When overriding Write / WriteLn, SetFlushBuffer must be called after each Write / WriteLn
call for Integrity to work properly.

C:\WINDOWS\WORD\DOT\!5X8.DOT
Error Codes
DOS Error Codes
2 File not found.

Reported by Append, Erase, ReName, or Reset if the name assigned to the file variable
does not specify an existing file.

3 Path not found.
Reported by Append, Erase, ReName, Reset, ReWrite, GetFAttr, or SetFAttr. If the name
assigned to the file variable is invalid or specifies a nonexistent subdirectory.

4 Too many open files.
Reported by Append, Reset, or ReWrite if the program has too many open files. DOS
never allows more than 15 open files per process. If you get this error with less than 15
open files, it may indicate that the CONFIG.SYS file does not include a FILES=xx entry or
that the entry specifies too few files. Increase the number to some suitable value, (20 for
instance).

+ It has been recommended and confirmed countless times on the Microsoft and Borland CIS
forums that a more realistic value for FILES= is 60. This is especially true if you are running
in Enhanced mode.

5 File access denied.
Reported by Reset or Append if FileMode allows writing and the name assigned to the file
variable specifies a directory or read-only file. Reported by ReWrite if the directory is full
or if the name assigned to the file variable specifies a directory or an existing read-only
file. Reported by ReName if the name assigned to the vile variable specifies a directory
or if the new name specifies an existing file. Reported by Erase if the name assigned to
the file variable specifies a directory or a read-only file. Reported by GetFAttr and
SetFAttr.

6 Invalid file handle
Reported by GetFTime and SetFTime if an invalid file handle is passed to DOS. It should
never occur; if it does, though, it is an indication that the file variable has been
corrupted.

17 Cannot rename across drives.
Reported by ReName if both names are not on the same drive.

IOResult Error Codes
101 Disk write error.

Reported by Close, Flush, Write, or WriteLn if the disk becomes full.
102 File not assigned.

Reported by Append, Erase, Rename, Reset, or ReWrite if the file variable has not been
assigned a name through a call to Assign.

103 File not open.
Reported by Close, EOF, Flush, Read, or Write if the file is not open.

104 File not open for input.
Reported by EOF, EOLN, Read, ReadLn, SeekEOF, or SeekEOLN if the file is not open for
input.

105 File not open for output.
Reported by Write, or WriteLn if the file is not open for output.

106 Invalid numeric format.
Reported by Read, or ReadLn if a numeric value read from a text file does not conform to
the proper numeric format.

+ Because TTextFile does its own internal I/O error checking, and because a call to the IOResult
function clears the internal I/O error flag, IOResult will not function properly outside of the
TTextFile objects (when used in regards to the file that particular object is associated with.
This is not to say, though, IOResult will not function properly if you include NS_Text into your
code.) To avoid any confusion, when interfacing with a TTextFile object you should simply
use TextOK / TextError instead.

